skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LeRoy, Carri J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Headwater streams are reliant on riparian tree leaf litterfall to fuel brown food webs. Terrestrial agents like herbivores and contaminants can alter plant growth, litter production, litter quality, and the timing of litterfall into streams, influencing aspects of the brown food web. At Mount St. Helens (USA), early successional streams are developing willow (Salix sitchensis) riparian zones. The willows are attacked by stem-boring herbivores, altering litter quality and the timing of litterfall. Within a established experimental plots, willows (male and female plants) were protected from herbivores using insecticides and provided with experimental additions of nitrogen. This enabled us to test the interacting influences of herbivores, nitrogen deposition, and willow sex on leaf litter quality, aquatic litter decomposition, and microbial and invertebrate detritivores. We found weak litter quality effects (higher N and lower C:N) for the herbivore treatment, but no effect of nitrogen deposition. Although litter decomposition rates were not strongly affected by litter treatments, detritivore communities were altered by all treatments. Nitrogen deposition resulted in decreased bacterial richness and decreased fungal diversity in-stream. Aquatic macroinvertebrate communities were influenced by the interacting effects of herbivory and nitrogen addition, with abundances highest in herbivore litter with the greatest N addition. Shredders showed the highest abundance in male, herbivore-attacked litter. The establishment of riparian willows along early successional streams and their interacting effects with herbivores and nitrogen deposition may be influencing detritivore community assembly at Mount St. Helens. More broadly, global changes like increased wet and dry N deposition and expanded ranges of key herbivores might influence tree litter decomposition in many ecosystems. 
    more » « less
  2. Abstract Over the past several decades, we have increased our understanding of the influences of plant genetics on associated communities and ecosystem functions. These influences have been shown at both broad spatial scales and across many plant families, creating an active subdiscipline of ecology research focused on genes‐to‐ecosystems connections. One complex aspect of plant genetics is the distinction between males and females in dioecious plants. The genetic determinants of plant sex are poorly understood for most plants, but the influences of plant sex on morphological, physiological, and chemical plant traits are well‐studied. We argue that these plant traits, controlled by plant sex, may have wide‐reaching influences on both terrestrial and aquatic communities and ecosystem processes, particularly for riparian plants. Here we systematically review the influences of plant sex on plant traits, influences of plant traits on terrestrial community members, and how interactions between plant traits and terrestrial community members can influence terrestrial ecosystem functions in riparian forests. We then extend these influences into adjacent aquatic ecosystem functions and aquatic communities to explore how plant sex might influence linked terrestrial‐aquatic systems as well as the physical structure of riparian systems. This review highlights data gaps in empirical studies exploring the direct influences of plant sex on communities and ecosystems but draws inference from community and ecosystem genetics. Overall, this review highlights how variation by plant sex has implications for climate change adaptations in riparian habitats, the evolution and range shifts of riparian species and the methods used for conserving and restoring riparian systems. 
    more » « less
  3. Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging. 
    more » « less
  4. The eruption of Mount St. Helens in 1980 resulted in a cataclysmic restructuring of its surrounding landscapes. The Pumice Plain is one of these landscapes, where tree species such as Sitka willow (Salix sitchensis) and their dependent communities have been established along newly-formed streams. Thus, the study of these dependent communities provides a unique and rare opportunity to investigate factors influencing metacommunity assembly during true primary succession. We analyzed the influence of landscape connectivity on metacommunity assembly through a novel application of circuit theory, alongside the effects of other factors such as stream locations, willow leaf chemistry, and leaf area. We found that landscape connectivity structures community composition on willows across the Pumice Plain, where the least connected willows favored active flyers such as the western tent caterpillar (Malacosoma fragilis) or the Pacific willow leaf beetle (Pyrrhalta decora carbo). We also found that multiple levels of spatial habitat structure linked via landscape connectivity can predict the presence of organisms lacking high rates of dispersal, such as the invasive stem-boring poplar weevil (Cryptorhynchus lapathi). This is critical for management as we show that the maintenance of a heterogeneous mixture of landscape connectivity and resource locations can facilitate metacommunity dynamics to promote ecosystem function and mitigate the influences of invasive species. 
    more » « less
  5. Generally, deciduous and evergreen trees coexist in subtropical forests, and both types of leaves are attacked by numerous insect herbivores. However, trees respond and defend themselves from herbivores in different ways, and these responses may vary between evergreen and deciduous species. We examined both the percentage of leaf area removed by herbivores as well as the percentage of leaves attacked by herbivores to evaluate leaf herbivore damage across 14 subtropical deciduous and evergreen tree species, and quantified plant defenses to varying intensities of herbivory. We found that there was no significant difference in mean percentage of leaf area removed between deciduous and evergreen species, yet a higher mean percentage of deciduous leaves were damaged compared to evergreen leaves (73.7% versus 60.2%). Although percent leaf area removed was mainly influenced by hemicellulose concentrations, there was some evidence that the ratio of non-structural carbohydrates:lignin and the concentration of tannins contribute to herbivory. We also highlight that leaf defenses to varying intensities of herbivory varied greatly among subtropical plant species and there was a stronger response for deciduous trees to leaf herbivore (e.g., increased nitrogen or lignin) attack than that of evergreen trees. This work elucidates how leaves respond to varying intensities of herbivory, and explores some of the underlying relationships between leaf traits and herbivore attack in subtropical forests. 
    more » « less
  6. Abstract Leaf litter inputs can influence the structure and function of both terrestrial and adjacent aquatic ecosystems. Dioecy and herbivory are two factors that together have received little attention, yet have the potential to affect the quantity, quality, and timing of riparian litterfall, litter chemistry, and litter decomposition processes. Here, we explore litter chemistry differences for the dioecious Sitka willow ( Salix sitchensis Sanson ex. Bong), which is establishing on primary successional habitats at Mount St. Helens (WA, USA) and is heavily infested with a stem‐boring weevil ( Cryptorhynchus lapathi ). Weevil‐attacked branches produced summer senesced litter that had significantly higher %N, lower C:N ratios, and lower condensed tannins than litter from branches that were unattacked by the weevil and senesced naturally in the autumn. Weevils more often attack female willows; however, these common litter chemicals did not significantly differ between males and females within the weevil‐attacked and ‐unattacked groups. High‐resolution mass spectrometry was used to isolate compounds in litter from 10 Sitka willow individuals with approximately 1500–1600 individual compounds isolated from each sample. There were differences between weevil‐attacked litter and green leaf samples, but at this level, there was no clustering of male and female samples. However, further exploration of the isolated compounds determined a suite of compounds present only in either males or females. These findings suggest some variation in more complex litter chemistry between the sexes, and that significant differences in weevil‐attacked litter chemistry, coupled with the shift in seasonality of litter inputs to streams, could significantly affect in‐stream ecological processes, such as decomposition and detritivore activity. 
    more » « less